

Ringkontraktionsreaktionen von Octamethylcyclotetrasilazanen zu silylsubstituierten Cyclotrisilazanen

Kerstin Dippel, Uwe Klingebiel*, Frank Pauer, George M. Sheldrick und Dietmar Stalke

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 13. Oktober 1989

Key Words: Cyclotetrasilazanes / Ring contraction / Cyclotrisilazanes

Ring Contractions of Octamethylcyclotetrasilazanes to Silyl-Substituted Cyclotrisilazanes

Reaction of the mono- and dilithium derivatives of bis(fluorsilyl)-substituted cyclotetrasilazanes with fluorosilanes and fluoroboranes leads to ring contraction with formation of cy-

Aufgrund der leichten Spaltbarkeit der Si-N-Bindung führen Reaktionen des Octamethylcyclotetrasilazans und seiner Lithiumsalze mit den meisten Reaktionspartnern unter Spaltung des Si-N-Ringgerüstes zur Bildung von acyclischen Silazanen¹⁻⁵⁾. Ein völlig anderes Reaktionsverhalten wird gegenüber Fluorsilanen und -boranen beobachtet. Mono- und dilithiierte Octamethylcyclotetrasilazane reagieren mit Fluorsilanen bzw. -boranen bei tiefen Reaktionstemperaturen unter Lithiumfluorid-Abspaltung und Erhalt des Si-N-Achtringgerüstes zu mono- und disubstituierten Cyclotetrasilazanen^{6,7)}. Hohe Reaktionstemperaturen führen unter Ringkontraktion und Substitution zur Bildung isomerer Sechs- und Vierringsysteme⁷⁾. Unbekannt war bislang die Ringgröße und Struktur von tri- und tetrasubstituierten Verbindungen des Octamethylcyclotetrasilazans.

Bis(fluorsilyl)-substituierte Cyclotetrasilazane lassen sich bei -10° C mit *tert*-Butyllithium sowohl mono- als auch dilithiieren. Die Umsetzung von monolithiierten disilylsubstituierten Cyclotetrasilazanen mit einem Fluorsilan bzw. Fluorboran bei -30° C führte zu den Kontraktionsprodukten 1-5, deren Konstitution durch die Röntgenstrukturanalyse von 1 (Abb. 2) aufgeklärt wurde. Die Bildung eines trisubstituierten Cyclotetrasilazans wird nicht beobachtet.

Für die Bildung der Kontraktionsprodukte 1-5 (Gl. 1) wird folgender Umlagerungsmechanismus vorgeschlagen: Bei der Isomerisierung zum Sechsring öffnet sich eine dem Fluorsilylsubstituenten (= \mathbb{R}^1) benachbarte Si-N-Bindung. Eine Erklärung hierfür ist in dem I-Effekt der Fluorsilylgruppe zu sehen, der zu einer Streckung und somit Schwächung der benachbarten endocyclischen Si-N-Bindung führt. Diese Tendenz zur Isomerisierung konnte durch Röntgenstrukturanalysen experimentell nachgewiesen werden⁷. Der Drittsubstituent greift an der Seitenkette des Sechsringanions an (Gl. 1).

Sechsgliedrige Ringe (6-8) entstehen ebenfalls in Reaktionen dilithiierter silylsubstituierter Achtringe mit Fluorsilanen (Gl. 2).

Die Verbindungen 3-8 sind unzersetzt destillierbare farblose Flüssigkeiten, 1 und 2 kristalline Festkörper.

clotrisilazanes (1-8). The isomerisation is proved by the crystal structure determination of 1 and by NMR spectroscopy.

Die Isomerisierung zu den Sechsringen wird NMR-spektroskopisch nachgewiesen. Exemplarisch wird das ¹³C-NMR-Spektrum von 7 vorgestellt (Abb. 1). Für die SiMe₂-Gruppen werden erwartungsgemäß drei chemische Verschiebungen im Verhältnis 1:2:1 = a:b:c gefunden. Die Gruppen a und c sind jeweils zu einem Triplett aufgespalten. Eine Zuordnung dieser Signale ist anhand eines Vergleichs mit den ¹³C-NMR-Daten des ebenfalls SiMe₂N(SiFMe₂)₂- Schema 2

substituierten Cyclotrisilazans 4 möglich. Die SiMe₂-Gruppe (b) tritt als Dublett (${}^{4}J_{CF} = 2.6$ Hz) von Tripletts (${}^{6}J_{CF} = 0.4$ Hz) auf. Die Resonanzen der Fluorsilylsubstituenten ergeben für die an das Ringsystem gebundenen Me₂-FSi(I)-Gruppen ein Dublett, während die der an der Seitenkette gebundenen Me₂FSi(II)-Substituenten zu einem Dublett von Dubletts (${}^{2}J_{CF}/{}^{4}J_{CF}$) aufgespalten sind.

Kristallstruktur von 1

Das Cyclotrisilazan 1 kristallisiert in der monoklinen Raumgruppe $P2_1/c$ (Abb. 2). Der Si-N-Sechsring liegt in einer verzerrten Wannenform vor. Die endocyclischen Si-N-Bindungslängen der silylsubstituierten Stickstoffatome N(1) und N(3) sind mit 176.3-177.5 (Tab. 1) signifikant länger als die Si-N-Abstände des N(2)-Stickstoffatoms mit 171.4 bzw. 172.2 pm. Die Si-N-Abstände der fluorsubstituierten Siliciumatome sind aufgrund der elektronenziehenden Wirkung der Fluoratome verkürzt.

Abb. 2. Kristallstruktur von 1

Experimenteller Teil

Die Versuche wurden unter Feuchtigkeitsausschluß durchgeführt. – Massenspektren: CH-5-Spektrometer, Varian. – NMR-Spektren: 30proz. Lösungen in CDCl₃; TMS, C_6F_6 , intern; Bruker-WP-80- oder -AM-250-Kernresonanzgerät. – Die Reinheit von 1-8 wurde Massen- und NMR-spektroskopisch überprüft. Von 1 liegt zusätzlich eine Röntgenstrukturanalyse vor.

Verbindungen 1-8: 20 mmol des entsprechenden Bis(fluorsilyl)cyclotetrasilazans in 100 ml *n*-Hexan werden bei 0°C mit 20 mmol (1-5) bzw. 40 mmol (6-8) tert-Butyllithium (15proz. in *n*-Pentan) lithiiert. Zur vollständigen Butan-Abspaltung wird die Lösung auf

Ringkontraktionsreaktionen von Octamethylcyclotetrasilazanen zu Cyclotrisilazanen

Tab. 1. Ausgewählte Bindungsabstände (pm) und -winkel (°) von 1

6.6 (9)	Si(1)-N(3)	177.5 (7)
6.6 (7)	Si(2)-N(2)	171.4 (10)
2.2 (9)	Si(3)-N(3)	176.3 (7)
3.6 (8)	Si(4)-N(4)	178.0 (10)
8.9 (6)	Si(5)-F(2)	158.7 (7)
9.4 (8)	S1(6)-F(3)	157.9 (6)
7.3 (8)	Si(6)-N(4)	172.3 (8)
8.1 (6)	Si(7)-F(6)	158.2 (6)
0.6 (11)		
110.6(4)	N(1) - Si(2) - N(2)	105,0(4)
102.6(4)	N(3)-Si(4)-N(4)	111.0(5)
103.4(4)	F(1)-Si(5)-N(1)	110,9(4)
105.8(4)	F(3) - Si(6) - F(4)	104.5(4)
110.2(4)	F(4)-Si(6)-N(4)	105.1(5)
102.6(3)	F(5) - Si(7) - N(4)	109.3(4)
107.9(4)	Si(1)-N(1)-Si(2	114.5(4)
126.2(4)	Si(2)-N(1)-Si(5	119.3(5)
126.1(5)	Si(1)-N(3)-Si(3	114.6(4)
120,8(4)	Si(3)-N(3)-Si(4) 119.9(4)
124.0(6)	Si(4)-N(4)-Si(7	119.0(4)
117.0(5)		,, (4)
	6.6 (9) 6.6 (7) 2.2 (9) 3.6 (8) 8.9 (6) 9.4 (8) 57.3 (8) 88.1 (6) 70.6 (11) 110.6(4) 102.6(4) 102.6(4) 102.6(4) 102.6(4) 102.6(3) 107.9(4) 126.2(4) 126.2(4) 126.2(4) 126.2(4) 126.2(5) 120.8(4) 120.8(4) 120.8(4) 120.8(4) 120.8(5) 1	$\begin{array}{ccccccc} 6.6 & (9) & Si(1) - N(3) \\ 6.6 & (7) & Si(2) - N(2) \\ 76.6 & (7) & Si(2) - N(2) \\ 76.6 & (7) & Si(2) - N(2) \\ 77.7 & (8) & Si(4) - N(4) \\ 78.9 & (6) & Si(5) - F(2) \\ 77.3 & (8) & Si(6) - F(3) \\ 77.3 & (8) & Si(6) - F(3) \\ 77.3 & (8) & Si(6) - N(4) \\ 88.1 & (6) & Si(7) - F(6) \\ 70.6 & (11) \\ \hline \\ 110.6(4) & N(1) - Si(2) - N(2) \\ 102.6(4) & N(3) - Si(4) - N(4) \\ 103.4(4) & F(1) - Si(5) - N(1) \\ 105.8(4) & F(3) - Si(6) - F(4) \\ 110.2(4) & F(4) - Si(6) - N(4) \\ 107.9(4) & Si(1) - N(1) - Si(2) \\ 126.2(4) & Si(2) - N(3) - Si(3) \\ 120.8(4) & Si(3) - N(3) - Si(4) \\ 112.0(5) & Si(4) - N(4) - Si(7) \\ 117.0(5) \\ \hline \end{array}$

20°C erwärmt und bei dieser Temperatur 0.5 h gerührt. Anschließend wird die Aufschlämmung auf -30°C abgekühlt, und 20 mmol (1-5) bzw. 40 mmol (6-8) des jeweiligen Fluorsilans bzw. Fluorborans werden hinzugegeben. Die Umsetzung mit *tert*-Butyltri-fluorsilan erfordert die Zugabe von 10 ml THF. Nach Abtrennung von Lithiumfluorid werden 1-8 durch Destillation im Hochvak. gereinigt. 1 und 2 kristallisieren nach der Destillation. Zur besseren Übersicht der ¹H-, ¹³C-, ²⁹Si-NMR-Daten wurden für die Positionsangaben der SiMe₂-Gruppen bzw. der Silylsubstituenten der tri-(1-5) und tetrasubstituierten Verbindungen (6-8) die in Schema 3 aufgeführten Kennzeichnungen gewählt.

Schema 3

1-(tert-Butyldifluorsilyl)-3-{[(tert-butyldifluorsilyl)(difluormethylsilyl)amino]dimethylsilyl }-2,2,4,4,6,6-hexamethylcyclotrisilazan (1): Schmp. 94°C, Ausb. 9.6 g (78%). – MS: m/z (%) = 601 (100) $[M - CH_3]^+$, FI-Messung: 616 (2) M^+ , 601 (100) [M -CH₃]⁺. - ¹H-NMR: $\delta = 0.25$ SiMe₂ (a) (⁵J_{HF} = 1.3 Hz), 0.25 SiMe₂ (c), 0.44 SiMe₂ (d) (tt), 0.49 SiMe₂ (b) (${}^{5}J_{HF} = 1.0$ Hz), 0.53 SiMeF₂ (${}^{3}J_{HF} = 5.4$, ${}^{5}J_{HF} = 0.9$ Hz), 0.75 NH, 1.03 CMe₃ (I) (${}^{4}J_{HF} =$ 1.1 Hz), 1.06 CMc₃ (II). - ¹³C-NMR: $\delta = -2.84$ SiCF₂ (²J_{CF} = 22.8 Hz), 4.53 SiC₂ (a) (${}^{4}J_{CF} = 2.2$ Hz), 5.69 SiC₂ (b) (${}^{4}J_{CF} = 1.1$ Hz), 6.52 SiC₂ (c), 6.76 SiC₂ (d), 18.33 CC₃ (I) (${}^{2}J_{CF} = 22.2$ Hz), 18.66 CC_3 (II) ($^2J_{CF} = 20.3$ Hz), 26.37 CC_3 ($^3J_{CF} = 1.0$ Hz), 29.92 CC_3 . -¹⁹F-NMR: $\delta = 31.46 \text{ SiF}_2\text{CMe}_3$ (I), $31.57 \text{ SiF}_2\text{CMe}_3$ (II)*, 44.84SiF₂Me* (* AA'XX'-System). - ²⁹Si-NMR: $\delta = -35.94$ SiF₂CMe₃ (I) $({}^{1}J_{SiF} = 296.2 \text{ Hz}), -35.52 \text{ SiF}_{2}\text{CMe}_{3}$ (II) $({}^{1}J_{SiF} = 299.5 \text{ Hz}),$ $-30.65 \operatorname{SiF}_{2}\operatorname{Me}(^{1}J_{\text{SiF}} = 275.6 \text{ Hz}), -7.03 \operatorname{Si}(a), -6.18 \operatorname{Si}(d), -1.73$ (c), -0.77 Si (b).

1-{[(tert-Butyldifluorsilyl) (difluormethylsilyl) amino]dimethylsilyl}-3-(difluormethylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (2): Sdp. 105 °C/0.01 mbar, Schmp. 40 °C, Ausb. 10.12 g (88%). – MS: m/z (%) = 559 (40) [M – CH₃]⁺. – ¹H-NMR: δ = 0.22 SiMe₂ (a) (⁵J_{HF} = 1.1 Hz), 0.25 SiMe₂ (c), 0.34 SiMeF₂ (³J_{HF} = 5.1 Hz), 0.44 SiMe₂ (d) (tt). 0.45 SiMe₂ (b) (⁵J_{HF} = 0.7 Hz), 0.53 SiMeF₂ (II) $({}^{3}J_{HF} = 5.3, {}^{5}J_{HF} = 0.9 \text{ Hz}), 1.06 \text{ CMe}_{3}$ $({}^{4}J_{HF} = 1.1 \text{ Hz}). - {}^{13}\text{C-NMR: } \delta = -2.76 \text{ SiCF}_{2}$ (II) $({}^{2}J_{CF} = 22.8 \text{ Hz}), -2.78 \text{ SiCF}_{2}$ (I) $({}^{2}J_{CF} = 25.5 \text{ Hz}), 4.03 \text{ SiC}_{2}$ (a) $({}^{4}J_{CF} = 1.8 \text{ Hz}), 5.71 \text{ SiC}_{2}$ (b) $({}^{4}J_{CF} = 0.9 \text{ Hz}), 5.97 \text{ SiC}_{2}$ (c), 6.65 SiC₂ (d) (tt), 18.70 CC₃ $({}^{2}J_{CF} = 20.3 \text{ Hz}), 26.42 \text{ CC}_{3}$ $({}^{3}J_{CF} = 0.9 \text{ Hz}). - {}^{19}\text{F-NMR: } \delta = 30.38 \text{ SiF}_{2}\text{CMe}_{3}^{*}, 40.86 \text{ SiF}_{2}\text{Me}$ (I), 43.63 SiF₂Me (II)* (* AA'XX'-System). - ${}^{29}\text{Si-NMR: } \delta = -35.37 \text{ SiF}_{2}\text{CMe}_{3}$ (${}^{1}J_{SiF} = 299.7 \text{ Hz}), -32.49 \text{ SiF}_{2}\text{Me}$ (I) $({}^{1}J_{SiF} = 270.7 \text{ Hz}), -30.72 \text{ SiF}_{2}\text{Me}$ (II) $({}^{1}J_{SiF} = 274.9 \text{ Hz}), -7.90 \text{ Si}$ (a), -6.09 Si (d), -1.92 Si (c), -1.11 Si (b) $({}^{3}J_{SiF} = 2.6 \text{ Hz}).$

1-{[(Difluormethylsilyl) (difluorphenylsilyl) amino]dimethylsilyl}-3-(difluorphenylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (3): Sdp. 160 °C/0.01 mbar, Ausb. 12.1 g (92%). - ¹H-NMR: δ = 0.21 SiMeF₂ (${}^{3}J_{HF} = 5.2$, ${}^{5}J_{HF} = 0.9$ Hz), 0.24 SiMe₂ (c), 0.33 SiMe₂ (d), 0.35 SiMe₂ (a) (${}^{5}J_{HF} = 1.1$ Hz), 0.52 SiMe₂, 7.0-7.2, 7.6-7.8 Ph. -¹³C-NMR: δ = -3.32 SiCF₂ (${}^{2}J_{CF} = 22.2$, ${}^{4}J_{CF} = 1.6$ Hz), 4.29 SiC₂ (a) (${}^{4}J_{CF} = 2.0$ Hz), 5.55 SiC₂ (c), 5.91 SiC₂ (d), 6.21 SiC₂ (b) (${}^{4}J_{CF} = 1.2$ Hz), 127.92 (${}^{2}J_{CF} = 26.3$ Hz), 128.22, 128.34, 130.38 (${}^{2}J_{CF} = 26.2$ Hz), 131.47, 132.12, 134.50 (${}^{3}J_{CF} = 1.2$ Hz), 134.55 Ph (I, II). - ¹⁹F-NMR: δ = 34.13 SiF₂Ph (I), 34.82 SiF₂Ph (II)*, 42.21 SiF₂Me* (* AA',XX'-System). - ²⁹Si-NMR: δ = -48.28 SiF₂Ph (II) (${}^{1}J_{SiF} = 268.4$ Hz), -48.17 SiF₂Ph (I) (${}^{1}J_{SiF} = 268.1$ Hz), -31.52 SiF₂Me (${}^{1}J_{SiF} = 274.1$ Hz), -7.92 Si (a), -6.20 Si (d), -1.95 Si (c), -0.41 Si (b) (${}^{3}J_{SiF} = 2.2$ Hz).

1-{[Bis(fluordimethylsilyl)amino]dimethylsilyl}-3-(fluordimethylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (4): Sdp. 105 °C/0.01 mbar, Ausb. 7.8 g (75%). - MS: m/z (%) = 505 (20) [M - CH₃]⁺. - ¹H-NMR: δ = 0.21 SiMe₂ (a) (⁵J_{HF} = 1.8 Hz), 0.23 SiMe₂ (c), 0.26 SiMe₂F (I) (³J_{HF} = 7.6 Hz), 0.34 SiMe₂F (II) (³J_{HF} = 8.4 Hz), 0.35 SiMe₂ (d) (⁵J_{HF} = 0.6 Hz)* [* Triplett überlagert vom SiMe₂F-(II)-Signal; ⁵J_{HF} wurde durch Messung in C₆H₆ bestimmt.]. - ¹³C-NMR: δ = 2.93 SiC₂F (II) (²J_{CF} = 17.7, ⁴J_{CF} = 1.9 Hz), 3.05 SiC₂F (²J_{CF} = 18.4 Hz), 5.00 SiC₂ (a) (⁴J_{CF} = 3.3 Hz), 6.02 SiC₂ (c) (⁶J_{CF} = 0.8 Hz), 7.19 SiC₂ (b) (⁴J_{CF} = 1.3 Hz), 7.46 SiC₂ (d) (⁴J_{CF} = 1.4 Hz). - ¹⁹F-NMR: δ = 28.79 SiF (I), 30.38 SiF (II). - ²⁹Si-NMR: δ = -10.74 SiMe₂ (a) (³J_{SiF} = 4.0 Hz), -10.28 SiMe₂ (d), -3.56 SiMe₂ (c), -3.19 SiMe₂ (b) (³J_{SiF} = 6.3 Hz), 7.52 SiF (I) (¹J_{SiF} = 266.3 Hz), 9.43 SiF (II) (¹J_{SiF} = 271.9, ³J_{SiF} = 5.1 Hz).

1- $\langle \{ [Bis(trimethylsilylamino) fluorboryl] (difluormethylsilyl) amino \} dimethylsilyl>-3-(difluormethylsilyl)-2,2,4,4,6,6-hexamethylcy$ clotrisilazan (5): Sdp. 120 °C/0.01 mbar, Ausb. 10.9 g (85%). – MS: $m/z (%) = 626 (12) [M – CH₃]⁺. – ¹H-NMR: δ = 0.17 SiMe₃ (<math>{}^{5}J_{HF} = 0.3 \text{ Hz}$), 0.19 SiMe₂ (a) (${}^{5}J_{HF} = 1.1 \text{ Hz}$), 0.22 SiMe₂ (c), 0.31 SiMeF₂ (I) (${}^{3}J_{HF} = 5.1 \text{ Hz}$), 0.35 SiMe₂ (d) [dt, ${}^{5}J_{HF} = 2.6 \text{ (D)}$, ${}^{5}J_{HF} = 0.8 \text{ Hz}$ (T)], 0.39 SiMe₂ (b) (${}^{5}J_{HF} = 0.7 \text{ Hz}$), 0.48 SiMeF₂ (II) (${}^{2}J_{FF} = 5.3 \text{ Hz}$). – ¹¹B-NMR: 27.32. – ¹³C-NMR: δ = -2.90 SiCF₂ (I) (${}^{2}J_{CF} = 25.6 \text{ Hz}$), -2.82 SiCF₂ (${}^{2}J_{CF} = 1.9 \text{ Hz}$), 5.62 SiC₂ (c), 6.02 SiC₂ (b), 6.16 SiC₂ (d) [dt, ${}^{4}J_{CF} = 1.9 \text{ Hz}$), 5.62 SiC₂ (c), 6.02 SiC₂ (b), 6.16 SiC₂ (d) [dt, ${}^{4}J_{CF} = 5.6 \text{ Hz}$), 104.50 BF. – ²⁹Si-NMR: δ = -32.63 SiF₂ (II) (${}^{4}J_{FF} = 5.6 \text{ Hz}$), -30.64 SiF₂ (II) (${}^{4}J_{SIF} = 273.3$, ${}^{3}J_{SIF} = 12.2 \text{ Hz}$), -9.22 Si (a), -5.56 Si (d) (${}^{3}J_{SIF} = 3.3 \text{ Hz}$), -2.58 Si (c), -1.54 Si (b), 4.48 SiMe₃ (${}^{3}J_{SIF} = 3.8 \text{ Hz}$).

1-(Difluormethylsilyl)-3-{[(difluormethylsilyl)(fluordimethylsilyl)amino]dimethylsilyl}-5-(fluordimethylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (6): Sdp. 110°C/0.01 mbar, Ausb. 10.7 g (88%). - MS: m/z (%) = 589 (10) [M - CH₃]⁺. - ¹H-NMR (C₆D₆): δ = 0.24 SiMe₂F (I) (³J_{HF} = 7.6 Hz), 0.24 SiMeF₂ (II) (³J_{HF} = 5.3, ⁵J_{HF} = 0.7 Hz), 0.25 SiMeF₂ (I) (³J_{HF} = 5.0 Hz), 0.27 SiMe₂F (II) (³J_{HF} = 7.1, ⁵J_{HF} = 0.9 Hz), 0.39 SiMe₂ [dt, ⁵J_{HF} = 1.1 Hz (D), ⁵J_{HF} = 0.6 Hz (T)], 0.48 SiMe₂ (b) (⁵J_{HF} = 1.2 Hz), 0.50

SiMe₂ [dt, ${}^{5}J_{HF} = 1.6$ (D), ${}^{5}J_{HF} = 1.2$ Hz (T)], 0.52 SiMe₂ (${}^{5}J_{HF} =$ 1.1 Hz). $-{}^{13}$ C-NMR: $\delta = -2.60$ SiCF₂ (II) (${}^{2}J_{CF} = 22.4, {}^{4}J_{CF} =$ 1.5 Hz), -2.52 SiCF_2 (I) (${}^2J_{CF} = 25.2 \text{ Hz}$), 1.93 SiC₂F (II) (${}^2J_{CF} =$ 17.2, ${}^{4}J_{CF} = 1.5$ Hz), 3.08 SiC₂F (I) (${}^{2}J_{CF} = 18.3$ Hz), 5.86 SiC₂ [dt, ${}^{4}J_{CF} = 3.4 \text{ (D)}, {}^{4}J_{CF} = 2.2 \text{ Hz (T)}, 6.16 \text{ SiC}_{2} \text{ (c)} ({}^{4}J_{CF} = 1.6, {}^{6}J_{CF} =$ 0.7 Hz), 6.71 SiC₂ (b) (${}^{4}J_{CF} = 2.3$, ${}^{6}J_{CF} = 0.6$ Hz), 7.10 SiC₂ [dt, ${}^{4}J_{CF} = 1.8$ (D), ${}^{4}J_{CF} = 1.1$ Hz (T)]. – 19 F-NMR: $\delta = 28.70$ SiF (II) $({}^{4}J_{FF} = 2.3 \text{ Hz})$, 30.75 SiF (I), 43.42 SiF₂ (II), 43.63 SiF₂ (I). -²⁹Si-NMR: $\delta = -32.17 \text{ SiF}_2$ (I) (¹ $J_{\text{SiF}} = 272.4 \text{ Hz}$), -31.73 SiF_2 (II) $({}^{1}J_{\text{SiF}} = 261.0, {}^{3}J_{\text{SiF}} = 5.2 \text{ Hz}), -7.78 \text{ Si} (d), -4.88 \text{ Si} (c), -3.77$ Si (b), -1.58 Si (a), 9.43 SiF (I) (${}^{1}J_{SiF} = 268.4$ Hz), 10.37 SiF (II) $({}^{1}J_{\rm SiF} = 275.1 \text{ Hz}).$

1-{/Bis(fluormethylsilyl)amino/dimethylsilyl}-3,5-bis(fluordimethylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (7): Sdp. 118°C/0.01 mbar, Ausb. 10.2 g (85%). – MS: m/z (%) = 581 (40) [M – CH₃]⁺, FI-Messung/ m/z (%) = 596 (10) M⁺. - ¹H-NMR: δ = 0.34 SiMe₂F (II) (${}^{3}J_{HF} = 7.7$ Hz), 0.38 SiMe₂F (II) (${}^{3}J_{HF} = 7.3$, ${}^{5}J_{\rm HF} = 1.1$ Hz), 0.39 SiMe₂ (a) (${}^{5}J_{\rm HF} = 1.7$ Hz), 0.41 SiMe₂ (d) $({}^{5}J_{\rm HF} = 0.8$ Hz), 0.45 SiMe₂ (b/c) $({}^{5}J_{\rm HF} = 1.2$ Hz). $- {}^{13}$ C-NMR: $\delta = 2.92 \operatorname{SiC}_2 F (^2 J_{CF} = 17.7, ^4 J_{CF} = 1.9 \operatorname{Hz}), 3.38 \operatorname{SiC}_2 F (I) (^2 J_{CF} =$ 18.5 Hz), 6.82 SiC₂ (a) (${}^{4}J_{CF} = 3.5$ Hz), 7.04 SiC₂ (b/c) (${}^{4}J_{CF} = 2.6$, ${}^{6}J_{\rm CF}$ = 0.7 Hz), 7.79 SiC₂ (d) (${}^{4}J_{\rm CF}$ = 1.4 Hz). – 19 F-NMR: δ = 29.90 SiF (I) (${}^{4}J_{FF} = 1.0$ Hz), 30.74 SiF (I). $-{}^{29}$ Si-NMR: $\delta = -9.96$ Si (d) (${}^{3}J_{\text{SiF}} = 3.5 \text{ Hz}$), -5.74 Si (b/c) (${}^{3}J_{\text{SiF}} = 4.0 \text{ Hz}$), -2.87 Si (a) $({}^{3}J_{\text{SiF}} = 4.8 \text{ Hz}), 8.74 \text{ SiF}$ (I) $({}^{1}J_{\text{SiF}} = 268.2 \text{ Hz}), 9.46 \text{ SiF}$ (II) $({}^{1}J_{\text{SiF}} =$ 271.6 Hz).

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope thermische Parameter ($pm^2 \times 10^{-1}$) für 1

	x	у	Z	U(eq)
Si(1)	3770(4)	3530(1)	426(2)	31(1)
S1(2)	1835(4)	2455(1)	362(2)	34(1)
Si(3)	5062(4)	2373(1)	1179(2)	38(1)
Si(4)	6068(4)	3557(1)	2056(2)	36(1)
Si(5)	437(4)	3658(1)	-93(2)	33(1)
Si(6)	5712(4)	4755(1)	3006(2)	38(1)
Si(7)	3728(4)	3742(1)	3092(2)	40(1)
F(1)	373(8)	4217(3)	529(3)	48(2)
F(2)	-865(7)	3239(3)	70(3)	44(2)
F(3)	6019(8)	5128(2)	2214(3)	45(2)
F(4)	4331(8)	5065(3)	3251(4)	58(3)
F(5)	3850(8)	3026(2)	3135(4)	56(3)
F(6)	3924(8)	3925(3)	4065(3)	59(3)
N(1)	1972(9)	3247(3)	223(4)	22(3)
N(2)	3570(11)	2186(3)	417(5)	36(3)
N(3)	4821(9)	3157(3)	1319(4)	25(3)
N(4)	5167(11)	4029(3)	2701(5)	37(3)
C(1)	3681(14)	4359(4)	619(6)	39(4)
C(2)	4577(13)	3430(5)	-520(6)	42(4)
C(3)	1178(14)	2307(5)	1355(7)	51(5)
C(4)	633(15)	207 5 (5)	-544(7)	54(5)
C(5)	6699(14)	2193(5)	730(7)	57(5)
C(6)	5100(16)	1903(5)	2146(7)	54(5)
C(7)	7251(14)	3049(5)	2805(7)	53(5)
C(8)	7320(14)	4006(5)	1534(7)	54(5)
C(9)	-100(13)	3949(4)	-1220(6)	36(4)
C(10)	-1653(14)	4199(6)	-1311(8)	58(5)
C(11)	-66(17)	3442(5)	-1838(6)	62(6)
C(12)	900(16)	4467(5)	-1377(7)	60(6)
C(13)	7287(14)	4875(4)	3897(6)	38(4)
C(14)	8710(15)	4683(6)	3680(8)	63(6)
C(15)	7371(19)	5557(5)	4105(8)	86(7)
C(16)	7042(17)	4520(6)	4686(7)	77(6)
C(17)	1900(15)	3945(6)	2557(8)	63(5)

1-{[Bis(difluormethylsilyl)amino]dimethylsilyl}-3,5-bis(difluormethylsilyl)-2,2,4,4,6,6-hexamethylcyclotrisilazan (8): Sdp. 120°C/ 0.01 mbar, Ausb. 9.1 g (74%). - MS: m/z (%) = 597 (10) [M - CH_3]⁺, FI-Messung: 612 (2) M⁺. - ¹H-NMR: $\delta = 0.21$ SiMeF₂ (I) $({}^{3}J_{HF} = 5.0 \text{ Hz})$, 0.24 SiMeF₂ (II) $({}^{3}J_{HF} = 5.6, {}^{5}J_{HF} = 0.7 \text{ Hz})$, 0.35 SiMe₂ (⁵ $J_{HF} = 0.7$ Hz), 0.45 SiMe₂ (b/c) (⁵ $J_{HF} = 1.0$ Hz), 0.46 SiMe₂ (${}^{5}J_{\text{HF}} = 1.1 \text{ Hz}$). $-{}^{13}\text{C-NMR}$: $\delta = -3.37 \text{ SiCF}_2(\text{II}) ({}^{2}J_{\text{CF}} =$ 22.8, ${}^{4}J_{CF} = 1.5$ Hz), -2.58 SiCF₂ (I) (${}^{2}J_{CF} = 23.4$ Hz), 5.31 SiC₂ $({}^{4}J_{CF} = 2.2 \text{ Hz}), 6.16 \text{ SiC}_{2} (b/c) ({}^{4}J_{CF} = 1.9 \text{ Hz}), 6.71 \text{ SiC}_{2} ({}^{4}J_{CF} =$ 1.2 Hz). $-{}^{19}$ F-NMR: $\delta = 42.40$ SiF₂ (II), 43.99 SiF₂ (I). $-{}^{29}$ Si-NMR: $\delta = 31.71 \text{ SiF}_2$ (I) (${}^{1}J_{\text{SiF}} = 272.8 \text{ Hz}$), -31.27 SiF_2 (II) $({}^{1}J_{\text{SiF}} = 273.9 \text{ Hz}), -5.92 \text{ Si}$ (c), -2.86 Si (b), 0.23 Si (a).

Kristallstrukturanalyse von 18): Die Intensitätsmessungen wurden auf einem Siemens-AED-Vierkreisdiffraktometer bei graphitmonochromatisierter Mo- K_{α} -Strahlung ($\lambda = 71.069 \text{ pm}$) durchgeführt. Die Messung erfolgte bei -85°C. Die Struktur wurde durch Direkte Methoden gelöst und nach dem Kleinste-Quadrate-Verfahren verfeinert. Wasserstoffatome wurden geometrisch ideal positioniert und mit festen thermischen Parametern nach dem Reitermodell verfeinert. – Kristallographische Daten: Kristallgröße $0.4 \times 0.2 \times$ 0.2 mm³, Raumgruppe $P2_1/c$, a = 934.9(4), b = 2203.9(6), c =1595.7(5) pm, $\beta = 100.62(8)^\circ$, $V = 3.231 \text{ nm}^3$, Z = 4, $D_{\text{ber}} = 1.269$ Mgm⁻³, $\mu = 0.34$ nm⁻¹, Anzahl der gemessenen Reflexe (2 $\Theta_{max} =$ 45°) 4266, unabhängige 4125, beobachtete $[F > 4\sigma(F)]$ 2362, R =0.086, $R_w = 0.080 [w^{-1} = \sigma^2(F) + 0.0008 \cdot F^2]$, verfeinerte Parameter 307, letzte Differenz-Fourier-Synthese: größtes Maximum 5.8×10^2 , größtes Minimum $5.5 \times 10^2 e \text{ nm}^{-3}$.

CAS-Registry-Nummern

1: 124856-43-5 / 2: 124856-44-6 / 3: 124890-60-4 / 4: 124856-45-7 / 5: 124890-61-5 / 6: 124856-46-8 / 7: 124856-47-9 / 8: 124856-48-0 / $\begin{array}{l} SiF_{3}Me: \ 373-74-0 \ / \ SiF_{3}CMe_{3}: \ 60556-38-9 \ / \ SiF_{2}Me_{2}: \ 353-66-2 \ / \ BF_{2}N(SiMe_{3})_{2}: \ 2251-46-9 \ / \ 1,5-Bis(tert-Butyldifluorsilyl)octa-1,5-Bis(tert-Butyldifluorsilyl) \\ \end{array}$ 1,5-Bis(tert-Butyldifluorsilyl)octamethylcyclotetrasilazan: 124856-49-1 / 1,5-Bis(difluormethylsilyl)octamethylcyclotetrasilazan: 124856-50-4 / 1,5-Bis(difluorphenyl-silyl)octamethylcyclotetrasilazan: 115421-12-0 / 1,5-Bis(fluordimethylsilyl)octamethylcyclotetrasilazan: 124856-51-5

- ³⁾ P. Geymayer, E. G. Rochow, Angew. Chem. 77 (1965) 818; An*gew. Chem. Int. Ed. Engl.* **4** (1965) 592. ⁴⁾ U. Wannagat, E. Bogusch, *Monatsh. Chem.* **102** (1971) 1806.
- ⁵⁾ O. J. Scherer, Organomet. Chem. Rev. Sect. A, 3 (1968) 281.
- ⁶⁾ K. Dippel, U. Klingebiel, M. Noltemeyer, F. Pauer, G. M. Sheldrick, Angew. Chem. 100, (1988) 1093; Angew. Chem. Int. Ed. Engl. 27 (1988) 1074.
- ⁷⁾ K. Dippel, Dissertation, Univ. Göttingen, 1989.
- ⁸⁾ Weitere Informationen zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320025, der Autoren und des Zeitschriftenzitats angefordert werden.

[335/89]

¹⁾ U. Wannagat, E. Bogusch, P. Geymayer, Monatsh. Chemie 95 (1964) 801.

²⁾ W. Fink, Angew. Chem. 78 (1966) 803; Angew. Chem. Int. Ed. Engl. 5 (1966) 760.